04为什么从共同的基础出发会产生两种不同的非欧几何呢我们知道,两种

简介: 04为什么从共同的基础出发会产生两种不同的非欧几何呢我们知道,两种非欧几何是从否定欧几里得几何学的第五公设出发而建立的。

自从数学诞生之日起,什么是它最伟大或者说最引人注目的发明呢?

可能的有两个:一个是微积分,另一个是非欧几何。

因为它太不平常了,它的发现有如哥伦布发现新大陆、弗洛伊德发现无意识,在人类的视野中打开了一片广阔的新天地,一片无人走过的、肥沃的处女地,人类在这里可以尽情地耕耘、收获。

01欧氏几何第5公理的否定导致非欧几何的诞生千年以来,欧几里得几何一直被认为是唯一的几何学,《几何原本》中的内容也被当成不可更改的至高真理,而欧几里得在《几何原本》中提出的五个公设也当然地被视为这至高真理的核心。

5、如一直线与两直线相交,且在同侧所交的两个内角之和小于两个直角,则这两直线无限延长后必定在该侧相交。

第五条公理又称平行公理(Parallel Postulate),简单来说就是:过直线外一点有且只有唯一一条直线与已知直线平行,这是欧氏几何的理论基础。

被欧几里得认为是理所当然、无需证明的,是他整个几何学的基础理论。

这第五公设就不大一样了,它要长得多,作为一个应该是不言而喻的公设显然不够自明。

因此,便有许多数学家试图通过各种方法,例如通过前面四条公设以及欧几里得的五条公理,来证明之。

02欧氏几何创立者罗巴切夫斯基,罗氏几何也称想象几何或双曲几何最早创立非欧几何的是高斯,但他并未公布之,这我们上面刚刚说过了,所以这个创立者的荣誉就归于罗巴切夫斯基了。

罗巴切夫斯基1793年生于俄罗斯的下诺夫哥罗德,在他只有7岁时父亲就去世了,母亲被迫搬到了比下诺夫哥罗德更加偏远的喀山。

罗巴切夫斯基从小刻苦学习,成绩优异,从小学到大学都得到了奖学金,免费上学,1811年从喀山大学毕业并且获得硕士学位时才18岁,留校后23岁时就成为教授,34岁时成了喀山大学的校长。

1826年2月,他在喀山大学物理数学系的一次学术会议上,作了题为《附有平行线定理的一个严格证明的几何学原理之简述》的学术报告,在报告中他阐述了一种“虚几何学”存在的可能性。

这“虚几何学”就是非欧几何,这一天后来被公认为非欧几何的诞生之日。

在推演过程中,罗巴切夫斯基得到一连串古怪、非常不合乎常理的命题。

凡是涉及平行公理的结论,罗氏几何的结论都是不成立的。

1855年,适逢喀山大学建校50周年,罗巴切夫斯基作为已经离职的老校长参加典礼,随身带去一部《泛几何学》,系统地记录了他的非欧几何思想,这也是他一生思想的总述。

直到1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧氏空间的曲面上实现。

这就是说,非欧几何命题可以“翻译”成相应的欧氏几何命题,如果欧氏几何没有,非欧几何也就自然没有。

直到这时,长期无人问津的罗氏几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也由此得到学术界的高度评价和一致赞美,这时的罗巴切夫斯基则被人们赞誉为“几何学中的哥白尼”,可惜他本人已经于1856年去世了。

人们后来发现,罗氏几何在研究宇宙空间或原子核世界的时候,比欧式几何更符合客观实际,并且在医学上已有独特的应用。

可以说,罗巴切夫斯基的非欧几何与欧几里得的古典几何学都只是一种更为广泛的几何学的一部分,在它们之上还存在着一种更新,也更为根本的几何学。

03 黎曼借罗氏理论的思想创造了另一种非欧几何——黎氏几何,又称为椭圆几何黎曼是德国人,1826年生于汉诺威。

父亲是一个新教路德派的牧师,母亲很早就去世了。

大约从6岁起黎曼开始学习数学,很快便露出了这方面的天才,十来岁时已经开始学习高等数学了。

这时候黎曼又开始喜欢物理学,由于埋首钻研物理,他的数学博士论文直到1851年才完稿,然后他将之呈给了伟大的高斯,获得了高斯极高的评价。

1853年底,黎曼向哥廷根大学递交了他的讲师就职论文《关于利用三角级数表示一个函数的可能性》并顺利获得讲师资格。

这个讲演被称为数学史上最著名的讲演之一,黎曼几乎以之勾勒出了一套全新的几何学,这就是黎曼几何学。

1859年,黎曼成为哥廷根大学的天文学教授兼天文台台长,这年他只有33岁。

次年,黎曼发表了《关于热传导的一个问题》,在其中发展了二次微分形式。

很简单,50来年后,爱因斯坦的相对论就是以这种方法为基础的。

黎曼从小健康状况就不好,1864年底,健康已经恶化的黎曼到了意大利的塞拉斯加休养,住在湖畔的一栋别墅里。

黎曼虽然一生短暂,但对数学做出的贡献极大,数学里有许多用“黎曼”来命名的数学名词:例如函数论有黎曼方法、关于代数函数有黎曼一罗赫定理、黎曼曲面、黎曼映射定理、黎曼积分、三角级数理论中的黎曼方法、黎曼几何、黎曼曲率、黎曼(函数、黎曼假设,如此等等。

04为什么从共同的基础出发会产生两种不同的非欧几何呢我们知道,两种非欧几何是从否定欧几里得几何学的第五公设出发而建立的。

为什么从共同的基础出发会产生两种不同的非欧几何呢?

欧几里得的第五公设可以简单地表述为:经过直线外一点,有且只有一条直线与已知直线平行。

第二种可能则是:在同一平面上,经过直线外一点,没有直线与已知直线平行。

罗巴切夫斯基正是从前者出发,得出了他的罗巴切夫斯基几何学,而黎曼则从后者出发,得到了他的黎曼几何学。

罗巴切夫斯基几何学的出发点是罗巴切夫斯基平行公理:在同一平面上,通过直线外一点至少有两条直线与已知直线平行。

我们这里要注意的是,这里的平行意思就是永不相交。

依据这个公理,罗巴切夫斯基得出了一系列的其他定理,我们这里目举几个:1、在同一平面上不相交的两直线,被第三条直线所截,同位角(或内错角)不一定相等。

这两个定理可以用图示如下:在左边的图形中,就是说直线a与直线b是永不相交,即平行的,而且∠α≠∠β。

而右边的图形中,直线a和b永不会相交。

如此等等,类似的定理还有很多。

看得出来,这四个定理与我们在欧几里得几何学中所见过的都大为不同,而且似乎都是错的,不符合我们的直观。

然而,如果深究它们,却可以发现在这貌似谬误之下蕴藏着深刻的真理。

黎曼几何学的出发点是上面否定欧几里得第五公设的第二种可能性,即在同一平面上,经过直线外一点,没有直线与已知直线平行。

或者还可以说成:世界上并不存在无限延伸的直线,任何直线都是有限的。

我们如果真的沿着欧几里得那种纯粹的“平面”上的直线行走,那么自然永远走不到尽头,也就是说直线是无穷的。

举个例子吧,假设我们在大地上的某一点铺一根长长的白纸条,一路铺过去,就像一路将一条直线画过去一样,那么这纸条会不会永远没有尽头呢?

事实上,铺过很长很长后,我们会发现,前面就是我们之前出发的端点。

这样的原因大家都明白:因为地球是一个球体,因此那些我们在地上画出来的直线实际上并非直线,而是曲线。

当我们顺着地球表面延伸时,它走过的路实际上有如地球的一条经线或纬线,这样当然必定相交。

与直线相应,由直线的一部分线段构成的三角形也差不多,我们现在在纸上画一个三角形,看上去好像是由三条直线构成的,实际上不是,由于它们是画在一张纸上的,而纸是铺在大地上的,而大地表面可不是理想的平面,而是一个球面,因此那三角形也就是一种“球面三角形"。

这就是黎曼几何学得出的另一个独特的定理,可以看出来,它与罗巴切夫斯基几何学中的三角形三内角和小于两直角刚好相对。

就像在丘陵地带行走一样,它有些地方是平坦的,但有些地方却有着各样的山包高地等。

在这样的地形,两点之间距离的计算公式将随着地点的不同而变化,例如在平面上是直线的,到了山包就是曲线了,二者计算距离的公式当然有所区别。

因为这里有了一个所谓“曲率”的问题,而黎曼就是要找到这样一种几何学,它能够根据曲率的不同而自行调整,并且能够计算出各种曲率下的距离等。

与线段的长度相似,黎曼认为平面与立体的空间也是这样,它也有着自己的“曲率”,由于“曲率”的不同,空间呈现不同的形式,他的几何学能够将所有这些空间统一起来。

看得出来,黎曼空间较之我们平常所称的空间内容要丰富得多,我们平常所称的空间乃是黎曼空间的一种特殊形式,精确地说,它就是欧几里得几何学的空间,它的曲率为零。

与之相对,罗巴切夫斯基几何学中的空间的曲率为负,而黎曼几何学的空间曲率为正。

简而言之,它说明了空间就像线一样是可以弯曲的,它可以有自己的“曲率”,即弯曲的比率、程度或者形式。

但事实上它不但可以,而且这弯曲的空间并非一种纯粹的数学幻想,而是实际存在的,它后来被爱因斯坦证实了,这就是我们后面讲物理学时要说的广义相对论。

从黎曼几何发现起,就注定了不平凡,经过后续无数数学家们的完善和发展,黎曼几何不仅对拓扑学、偏微分方程、多复变函数理论等数学分支产生重要影响,更直接影响现代物理学的发展。

爱因斯坦,在1915年发表了著名的广义相对论,正是以黎曼几何为数学基础。

爱因斯坦在广义相对论里说明到:“放弃了关于时空均匀性的观念,认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。

”这个关于时空的物理解释,正是黎曼几何的数学观念,因此,爱因斯坦的广义相对论中的空间几何本质上就是黎曼几何。

射影几何它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学。

拓扑几何拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。

十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学,从此开始了现代拓扑学的系统研究。

05带给我们的思考实数到虚数,从欧氏几何到非欧几何,不仅是一种数学上突破,其背后蕴含着思维方式的转变,实际是体现的也是哲学观的转变。

1、 突破人类思维的惯性,尊重经典,但不迷信经典从欧氏几何到非欧几何的突破并不是来源于现实生活的需要,而是人类思维主动寻求突破的结果。

在这一全新的概念被发掘建立的时候,现实中并没有表现出对它们的强烈需要,其创立是数学家们大胆地否定创新,天马行空地思维想象产生的,而天马行空的想象是思维主动性的重要体现。

人的思维是有惯性的,一个新的理念和新的概念提出,往往很难被人接受,但科学探索的的意义就是要打破人的思维惯性。

2、思维的突破为世界打开全新的窗户在科研的过程当中,理论和实践是一对统一的概念,有时候是通过创新性的实践推动了理论的发展,这一点在自然科学领域尤其明显,很多科学发现都是源自于现实中的观测和实验结果,科学家在总结大量实践规律的基础上完成了理论创新。

很多时候理论创新的重要性并不能够在很短的时间内体现出来,非欧几何的创新都在很长一段时间内被学界认为是毫无意义的,甚至被认为是钻牛角尖的产物,没有任何的现实意义,但事实上经过了时间的沉淀,这些概念不仅没有消沉,反而大放异彩。

在非欧几何的创立过程中,数学家千百年来无法证明平行定理,于是便平行定理,否定了欧氏几何的理论基础,将几何由平面空间推向了弯曲空间。

在大胆地否定之后产生了全新的概念,这是对原概念逻辑的冲击和否定,但新概念和旧概念并非是完全对立的,大胆创新形成的新概念和旧概念一起构成了全新的数学。

非欧几何则作为欧氏几何的对立,与欧氏几何一同完善了几何学的理论框架,二者一同形成了更广阔深远的几何概念。


以上是文章"

04为什么从共同的基础出发会产生两种不同的非欧几何呢我们知道,两种

"的内容,欢迎阅读时来游戏网的其它文章